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Digital phenotyping by consumer wearables
identifies sleep-associated markers of
cardiovascular disease risk and biological aging
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Stuart Alexander Cook 1,2,3,11,12, Khung Keong Yeo4*, Patrick Tan1,6,9,13* & Weng Khong Lim 1,6*

Sleep is associated with various health outcomes. Despite their growing adoption, the

potential for consumer wearables to contribute sleep metrics to sleep-related biomedical

research remains largely uncharacterized. Here we analyzed sleep tracking data, along with

questionnaire responses and multi-modal phenotypic data generated from 482 normal

volunteers. First, we compared wearable-derived and self-reported sleep metrics, particularly

total sleep time (TST) and sleep efficiency (SE). We then identified demographic, socio-

economic and lifestyle factors associated with wearable-derived TST; they included age,

gender, occupation and alcohol consumption. Multi-modal phenotypic data analysis showed

that wearable-derived TST and SE were associated with cardiovascular disease risk markers

such as body mass index and waist circumference, whereas self-reported measures were not.

Using wearable-derived TST, we showed that insufficient sleep was associated with pre-

mature telomere attrition. Our study highlights the potential for sleep metrics from consumer

wearables to provide novel insights into data generated from population cohort studies.
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The relationship between sleep and various health outcomes
has been extensively studied. Among others, insufficient
sleep has been linked to obesity1,2, hypertension3–6, car-

diovascular disease (CVD)7–10, insulin resistance11–14, and even
premature death15,16. Previous studies on sleep-health interac-
tions have relied on three methods to quantify sleep; sleep
questionnaires/diaries, actigraphy, and polysomnography (PSG).
There are drawbacks associated with each approach. First, sleep
questionnaires/diaries lack precision and rely on subjective
recall17. Second, actigraphy involves specialized devices and are
only suitable for relatively short studies. Finally, PSG studies,
while being the gold-standard in accuracy, are very resource-
intensive to conduct18.

The digital revolution has resulted in the proliferation of
consumer wearables with activity tracking functionality. These
devices range from relatively simple and low-cost fitness trackers
to more sophisticated and multifunctional smartwatches. Beyond
physical activity, such devices also track sleep duration and sleep
stages, the latter using integrated heart rate (HR) sensors.
Although marketed as tools to promote healthy sleep habits, the
rapidly growing adoption of consumer wearables suggest their
potential as sources of quantitative sleep data for sleep-related
biomedical research.

Recent studies have begun exploring the potential of sleep data
derived from consumer wearables. First, researchers have com-
pared the accuracy of sleep as measured by consumer wearables
from several manufacturers (e.g., Fitbit and Jawbone) with gold
standard PSG measurements19–22. Consumer wearables were
found to perform similarly to actigraphs in that they were
accurate in detecting sleep but did less well in detecting wake21,23.
Some cohort studies have begun using consumer wearables. For
example, we recently used Fitbit-derived sleep tracking data to
show differences in sleep patterns among volunteers stratified
into various activity pattern clusters24. Xu et al. used Fitbit
Charge HR sleep data from 748 individuals to demonstrate
independent associations between both sleep duration and sleep
duration variation with body mass index (BMI)25. Additionally,
Turel et al. used Fitbit devices to show a negative association
between sleep duration and abdominal obesity26.

Despite these advances, the potential role of sleep metrics from
consumer wearables in population health studies remains largely
unexplored. First, there has been limited comparison between
sleep metrics from consumer wearables and self-reported sleep
quality from questionnaires such as the Pittsburgh Sleep Quality
Index (PSQI), which is typically used in large cohort studies
where it is it impractical and costly to use actigraphy or PSG25,27.
This is important if consumer wearables are to replace or aug-
ment sleep questionnaires in future cohort studies. Second, the
utility of consumer wearables in identifying associations between
sleep and health markers is relatively unknown, especially in
Asians; a population with considerably different sleep behavior
compared to Western cohorts25,28. Health markers of typical
interest in population health studies include CVD risk markers
such as anthropometrics, blood pressure, lipid profile, and fasting
blood glucose (FBG). Telomeres are hexameric repeats that cap
chromosome ends and are progressively shortened with succes-
sive cell divisions29. Leukocyte telomere length (LTL) is thus
usually included in cohort studies as a biomarker of aging30.
Finally, there has yet to be an exploration of how wearable sleep
data correlates with demographic, socioeconomic, and lifestyle
factors.

Using an expanded cohort and dataset compared to our initial
study24, we sought to address these gaps through a comprehen-
sive analysis of sleep data obtained from Fitbit Charge HR activity
trackers worn by 482 Singaporean volunteers. Apart from the
wearable tracking, these volunteers were comprehensively

profiled for CVD risk markers and LTL. We found that sleep
metrics from consumer wearables could be used to identify not
just sleep-related demographic, socioeconomic, and lifestyle fac-
tors in health cohorts, but also CVD risk markers affected by
sleep duration and quality. Furthermore, we used wearable-
derived sleep duration to show that volunteers with insufficient
sleep experienced premature telomere shortening. Our results
highlight the potential for consumer-grade wearables as sources
of quantitative sleep metrics in population health studies, thus
increasing power to detect sleep-associated factors.

Results
Comparison between wearable-derived and subjective sleep
metrics. The cohort of 482 volunteers was tracked using Fitbit
Charge HR wearables that measured physical activity, HR, and
sleep. Summary statistics for the cohort are shown in Table 1. The
volunteers were on average 46 years of age (range 21 to 69 years)
at enrollment. On average, they had 4 nights of tracked sleep
(range 3 to 11 nights), with a mean total sleep time (TST) of 6 h
and 28 min. We first compared objective sleep measures from
consumer wearables to subjective PSQI responses. The PSQI sleep
questionnaire comprises several components, each encompassing
a different aspect of sleep quality. It then summarizes individual
component scores into a global PSQI score. We compared
wearable-derived TST and SE with global PSQI scores and found
correlations in neither (rs=−0.089, p= 0.091 and rs=−0.080,
p= 0.129 respectively). Wearable-derived TST, however, showed
a significant, albeit weak correlation with self-reported TST (rs=
0.283, p= 2.394E-10). We asked if this weak correlation could be
due in part to the relatively short study duration, and therefore
modified the inclusion criteria from at least three nights of
tracked sleep to four and five nights. Indeed, when the thresholds
increased, correlation with self-reported TST rose to 0.322 (p=
6.218E-09, n= 310) and 0.397 (p= 1.425E-06, n= 138) respec-
tively. We then categorized self-reported TST by levels specified
in component 3 of the PSQI, which profiles habitual sleep
duration. Compared to those with the lowest score of 0 (>7 h of
sleep), those with scores of 1 (6 to7 hours) and 2 (5 to 6 h) had
lower wearable-derived TST (β=−0.321, CI=−0.512 to
−0.131, p= 0.001 and β=−0.721, CI=−1.027 to −0.415, p=
4.94E-06 respectively, Fig. 1a). However, those with a score of 3
(<5 h) exhibited no significant difference in TST compared to
those with a score of 0 (β=−0.428, CI=−0.972 to 0.115, p=
0.123), indicating lower concordance with wearable-derived TST
among those with self-perceived chronic sleep deprivation. This
may be due to the limited number of volunteers in that category
(n= 13) and correspondingly higher variability in wearable-
derived TST. Overall, volunteers on average over-estimated
habitual sleep duration by 6 min compared to objective
wearable-derived measurements (p= 0.067, paired Student’s
t-test).

Apart from TST, the Fitbit wearables also measure sleep
efficiency (SE) as the fraction of TST over total time in bed.
Similarly, the PSQI estimates SE using self-reported habitual sleep
duration, sleep times and wake times. An overall comparison
between wearable-derived and self-reported SE revealed no
correlation (rs=−0.080, p= 0.081). However, when self-
reported SE was grouped by PSQI component 4 scoring thresh-
olds (>85%, 75–84%, 65–75%, <65%), volunteers in the <65%
group had significantly lower wearable-derived SE compared
others (mean SE= 89.722% vs 92.638%, two-sided Student’s t-
test p-value= 0.005, Fig. 1b). Thus, only volunteers with the
poorest self-perceived SE have concordantly lower wearable-
derived SE. We note that wearable-derived SE is almost uniformly
high (mean SE= 92.584%), with little variation (SE standard
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deviation= 3.060%); possibly due to the lower sensitivity of Fitbit
wearables in detecting wake states as opposed to sleep states19.

Another wearable-derived sleep metric available was the
number of awakenings per sleep session. For each volunteer, we
obtained the average daily number of nocturnal awakenings. We
then compared this number against responses to question 5b of

the PSQI, which asks volunteers how frequently they had trouble
sleeping due to waking up in middle of the night or early
morning. We observed a weak correlation (rs= 0.189, p=
4.114E-05), with volunteers reporting the highest (≥3 times/week)
number of nocturnal awakenings having significantly higher daily
wearable-detected nocturnal awakenings compared to those

Table 1 Summary statistics of study volunteers

Characteristic Female (n= 262; 54.36%) Male (n= 220; 45.64%) Test

Age, years 46.21 (11.35) 45.80 (12.70) 0.703
Ethnicity 0.001
Chinese 247 (94.3) 192 (87.3)
Indian 6 (2.3) 11 (5.0)
Malay 2 (0.8) 14 (6.4)
Others 7 (2.7) 3 (1.4)
BMI, kg/m2 22.83 (3.80) 24.27 (3.06) <0.001
WC, cm 79.01 (11.08) 86.82 (9.36) <0.001
WHtR 0.50 (0.07) 0.51 (0.05) 0.073
BFP, % 33.16 (7.65) 23.64 (6.48) <0.001
SMP, % 35.49 (4.40) 42.57 (4.25) <0.001
SBP, mmHg 122.54 (17.53) 132.06 (15.04) <0.001
DBP, mmHg 73.82 (12.85) 82.40 (10.88) <0.001
Total Cholesterol, mmol/l 5.38 (0.93) 5.39 (0.97) 0.922
LDL, mmol/l 3.34 (0.81) 3.45 (0.91) 0.183
HDL, mmol/l 1.58 (0.32) 1.36 (0.32) <0.001
TGs, mmol/l 1.02 (0.54) 1.33 (0.80) <0.001
Glucose,mmol/l 5.18 (0.50) 5.39 (0.73) <0.001
RestingHR, (Fitbit, bpm) 69.79 (6.37) 68.23 (6.48) 0.008
DailySteps, (Fitbit, ×1000) 10349.56 (3466.18) 11061.09 (3818.57) 0.033
LTL, bp −47.72 (443.41) −57.12 (536.72) 0.899
GPPAQ Score 1.31 (1.12) 1.95 (1.11) <0.001
Wearable-derived TST, hr 6.60 (1.00) 6.32 (0.98) 0.002
Self-reported TST (PSQI Sleep Hour), hr 6.59 (1.04) 6.56 (1.00) 0.796
Wearable-derived SE, % 93.08 (2.84) 92.00 (3.22) <0.001
Self-reported SE (PSQI Component 4 Score), % 0.26 (0.63) 0.22 (0.56) 0.407
Wearable-derived nocturnal awakenings 2.00 (1.39) 1.96 (1.58) 0.778
Self-reported nocturnal awakenings (PSQI Question 5b) 1.02 (1.06) 1.13 (1.13) 0.263
Global PSQI Score 3.73 (2.36) 3.78 (2.14) 0.854

Test p-values for between gender comparisons are shown: For continuous variables, two-sided Student’s t-test was used, whereas categorical values were evaluated using the chi-squared test
BMI body mass index, WC waist circumference, WHtR waist-to-height ration, BFP body fat percentage, SMP skeletal muscle percentage, SBP systolic blood pressure, DBP diastolic blood pressure, LDL
low-density lipoprotein, HDL high-density lipoprotein, TG triglycerides, LTL leucocyte telomere length, TST total sleep time, SE sleep efficiency, GPPAQ General Practice Physical Activity Questionnaire,
PSQI Pittsburgh Sleep Quality Index

12

10

8

6

4

W
ea

ra
bl

e-
de

riv
ed

 T
S

T
 (

h)

W
ea

ra
bl

e-
de

riv
ed

 S
E

 (
%

)

PSQI component 3 score

0 1 2 3

PSQI component 4 score

0 1 2 3 0 1 2 3

Decreasing TST Decreasing SE

n = 258 n = 165 n = 46 n = 13 n = 397 n = 62 n = 14 n = 9 n = 193 n = 118 n = 84 n = 70

105

100

95

90

85

80

PSQI question 5b score

N
oc

tu
rn

al
 a

w
ak

en
in

gs

6

5

4

3

2

1

0

Increasing nocturnal
awakenings

a b c

Fig. 1 Comparison between wearable-derived and self-reported sleep metrics. a Wearable-derived TST and PSQI Component 3 score (sleep duration).
b Wearable-derived SE and PSQI Component 4 score (sleep efficiency). c Wearable-derived nocturnal awakenings and PSQI Component 5b score
(nocturnal awakenings). Asterisks denote significance of component score in linear model compared to reference score of 0. *p < 0.01, ***p < 0.001. TST
total sleep time, SE sleep efficiency, PSQI Pittsburgh Sleep Quality Index

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0605-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:361 | https://doi.org/10.1038/s42003-019-0605-1 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


reporting no trouble sleeping in the past month (β= 0.586, CI=
0.185 to 0.987, p= 0.004, Fig. 1c). Collectively, our findings show
that consumer wearables provide objective sleep metrics that,
although associated with to a certain extent, are orthogonal to
subjective measures of sleep quality.

Relationship between wearable sleep metrics and cohort
demographics. We next determined if wearable-derived sleep
metrics can identify sleep-associated demographic, socio-
economic and lifestyle factors in our cohort. These factors were
obtained from responses to detailed demographic and socio-
economic questionnaires administered during volunteer
recruitment.

Although the volunteers were predominantly of Chinese
ethnicity (n= 439, 91.1%), some were of Malay (n= 16, 3.3%),
Indian (n= 17, 3.5%) and other (n= 10, 2.1%) ethnicities.
Adjusting for age and gender, we found that Malay volunteers
on average slept 41 min less than Chinese volunteers (CI=−71
to −10 min, p= 0.009) whereas Indian volunteers slept for an
additional 32 min compared to their Chinese counterparts (CI=
3 to 60 min, p= 0.029). Similarly, after adjusting for gender and
ethnicity, we found that TST decreased with age (β=−0.493,
CI=−0.941 to −0.044, p= 0.032, Fig. 2b). For gender, we found
that after adjusting for age and ethnicity, female volunteers on
average slept 16 min longer than their male counterparts (CI=
−26 to −5 min, p= 0.005, Fig. 2c).

We next examined relationships between wearable-derived
TST and socioeconomic factors. Among others, we considered
income levels, residence type, education level and occupation type
(Supplementary Table 1). Of these factors, occupation type and
residence type were associated with TST. Volunteers engaged in
manual work slept 27 min less then volunteers engaged in other
occupation types (i.e., service industry, office work and
unemployed/retired, CI=−50 to −4 min, p= 0.022, Fig. 2d).
Furthermore, volunteers living in private residences slept 15 min
longer than those living in public housing (CI= 2–27 min, p=
0.019).

Several self-reported lifestyle factors were also analyzed for
association with wearable-derived TST. These included exer-
cise, smoking status, alcohol consumption and caffeine
consumption (Supplementary Table 2). Apart from alcohol
consumption, no other significant associations were found.
Volunteers who self-reported alcohol consumption within the
past three months slept 19 min longer than those who did not,
adjusting for age, gender and ethnicity (CI= 8–30 min, p=
8.54E-04). When alcohol consumption was broken down by
type of alcohol, volunteers reporting consumption of hard
liquor had the largest difference in TST compared to those that
did not (28 min longer, CI= 10–46 min, p= 0.002), followed by
red wine (19 min longer, CI= 5– 33 min, p= 0.008) and beer
(18 min longer, CI= 4–32 min, p= 0.014). We did not identify
any significant associations when the analyses in this section
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were repeated using self-reported TST instead of wearable-
derived TST (Supplementary Tables 1 and 3).

Wearable-derived sleep metric associations with CVD markers.
A key aim of the study cohort was to study CVD risk in normal
individuals. To that end, various baseline markers of cardiovas-
cular health were collected, including anthropometric measure-
ments (BMI, waist circumference [WC], waist-to-height ratio
[WHtR], body fat percentage [BFP], skeletal muscle percentage
[SMP]), resting HR, blood pressure (systolic blood pressure
[SBP], diastolic blood pressure [DBP]), lipid panel results (total
cholesterol [TotalChol], low-density lipoprotein [LDL], high-
density lipoprotein [HDL], triglycerides [TG] and FBG). To
determine if wearable-derived sleep metrics were associated with
any of these CVD risk markers, we performed multiple linear
regression using three different models. Models 1 and 2 consider
TST and SE individually, whereas Model 3 includes both TST and
SE. All three models included age, gender and daily step counts as
covariates. Wearable-derived TST was associated with BMI,
TotalChol and resting HR, whereas wearable-derived SE was
associated with BMI, WC, WHtR and HDL levels (Table 2, results
for Model 3 are in Supplementary Table 3). Neither wearable-
derived TST nor SE were significantly associated with blood
pressure or FBG levels in this study. As with cohort demo-
graphics, we tested self-reported sleep metrics for TST and SE
using the same models and found no significant associations
(Supplementary Table 4). We also considered models with
interactions between wearable-derived sleep metrics and two
factors; age and gender. Apart from an interaction between
wearable-derived TST and age for SMP, we did not identify any
other significant interactions (Supplementary Table 5).

Wearable-inferred sleep insufficiency is associated with pre-
mature telomere attrition. A subset of the cohort (n= 175)
underwent whole-genome sequencing (WGS) for prospective
genetic studies. Studies have shown that LTL can be estimated
from WGS data by analyzing reads containing the telomeric
repeat motif (TTAGGG). We used a tool called Telomerecat that
estimates LTL by calculating the ratio between read-pairs

completely mapping to the telomere and those that span the
telomere boundary31. WGS-inferred LTL (“WGS-LTL”) was
computed for the 175 volunteers with WGS data, and the esti-
mated values corrected to account for different sequencing runs.
We first selected 20 volunteers of varying WGS-LTL and
experimentally measured LTL using quantitative polymerase
chain reaction (qPCR, “qPCR-LTL”). LTL measurements from
the two methods were significantly correlated (rp= 0.642, p=
0.002). WGS-LTL also correlated with volunteer age (rp=
−0.251, p= 8.184E-04). When volunteers were split into age-
groups of 20–40, 40–60 and 60–80 years, volunteers in the 40–60
and 60–80 years age-groups had WGS-LTL that were on average
259 base pairs (bp) and 432 bp shorter than the reference group
of 20–40 years (CI=−440.101 to −78.434, p= 0.006 and CI=
−698.315 to −166.112, p= 0.002 respectively, adjusted for gen-
der, ethnicity and BMI, Fig. 3a). We then asked if wearable-
derived sleep metrics were associated with telomere length and
found a positive association between wearable-derived TST and
WGS-LTL (β= 1.275, CI= 0.187–2.363, p= 0.023, adjusted for
age, gender, ethnicity and BMI, Fig. 3b). We further examined
this association by considering two groups of volunteers; those
with wearable-derived TST < 5 h and those with wearable-derived
TST > 7 h. Volunteers with adequate sleep (>7 h) had WGS-LTL
that was on average 356 bp longer than those with insufficient
sleep (<5 h) (CI= 74.573–636.538, p= 0.016, adjusted for age,
gender, ethnicity, and BMI, Fig. 3c).

To validate this finding, we performed qPCR-based telomere
length estimation on 305 volunteers from the cohort without
WGS data. We were able to replicate the association between
wearable-derived TST and qPCR-LTL (β= 7.288E-04, CI=
8.318E-05 to 0.001, p= 0.028, adjusted for age, gender, ethnicity,
and BMI, Fig. 3d), as well as the observation that volunteers with
adequate sleep had longer telomeres than those with insufficient
sleep (β= 0.253, CI= 0.079 –0.427, p= 0.005, adjusted for age,
gender, ethnicity and BMI). However, when self-reported TST
was used instead of wearable-derived TST, a significant associa-
tion with LTL was found in the WGS-based discovery cohort
(β= 93.835, CI= 25.645–162.026, p= 0.008) but not in the
qPCR-based validation cohort (β= 0.020, CI=−0.015 to 0.055,
p= 0.258). We also did not identify any significant interactions

Table 2 Association between wearable-derived sleep metrics and CVD risk markers

Wearable-derived TST and SE

Marker Model 1a Model 2b

Wearable-derived TST Wearable-derived SE

β (95% CI) p β (95% CI) p

BMI −5.683E-03 (−1.111E-02 to −2.735E-04) 0.040 −1.089E-01 (−2.127E-01 to −5.105E-03) 0.040
WC 1.100E-03 (−1.499E-02 to 1.720E-02) 0.893 −4.103E-01 (−7.169E-01 to −1.036E-01) 0.009
WHtR −3.750E-05 (−1.345E-04 to 5.952E-05) 0.449 −2.515E-03 (−4.364E-03 to −6.665E-04) 0.008
RestingHR −1.447E-02 (−2.423E-02 to −4.721E-03) 0.004 −2.448E-02 (−2.132E-01 to 1.643E-01) 0.800
SBP −8.718E-03 (−3.360E-02 to 1.616E-02) 0.493 −1.795E-01 (−6.569E-01 to 2.978E-01) 0.461
DBP −8.249E-03 (−2.676E-02 to 1.026E-02) 0.383 −1.100E-02 (−3.665E-01 to 3.445E-01) 0.952
TotalChol −1.493E-03 (−2.935E-03 to −5.190E-05) 0.043 4.961E-03 (−2.282E-02 to 3.274E-02) 0.726
LDL −1.304E-03 (−2.624E-03 to 1.548E-05) 0.053 2.976E-03 (−2.250E-02 to 2.845E-02) 0.819
HDL −9.582E-05 (−5.793E-04 to 3.877E-04) 0.670 9.446E-03 (2.062E-04 to 1.869E-02) 0.046
TG −2.046E-04 (−1.231E-03 to 8.221E-04) 0.670 −8.832E-03 (−2.852E-02 to 1.086E-02) 0.380
FBG −2.354E-04 (−1.165E-03 to 6.937E-04) 0.620 −2.399E-03 (−2.018E-02 to 1.538E-02) 0.792
BFP −1.015E-02 (−2.116E-02 to 8.620E-04) 0.071 −1.729E-01 (−3.836E-01 to 3.777E-02) 0.108
SMP 6.464E-03 (-1.530E-04 to 1.308E-02) 0.056 1.030E-01 (−2.366E-02 to 2.297E-01) 0.112

Model 1= TST only, Model 2= SE only, Model 3= TST+ SE. All models include age and gender as covariates. p-values in bold are statistically significant (p < 0.05)
BMI body mass index, WC waist circumference, WHtR waist-to-height ration, BFP body fat percentage, SMP skeletal muscle percentage, SBP systolic blood pressure, DBP diastolic blood pressure,
TotalChol total cholesterol, LDL low-density lipoprotein, HDL high-density lipoprotein, TG triglycerides, TST total sleep time, SE sleep efficiency and FBG fasting blood glucose.
aMarker~Age+Gender+ Ethnicity+AverageDailyTotalSteps+Wearable-derived TST
bMarker~Age+Gender+ Ethnicity+AverageDailyTotalSteps+Wearable-derived SE
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between wearable-derived TST and two factors; age (WGS-LTL:
β= 0.044, CI=−0.061 to 0.150, p= 0.413, qPCR-LTL: β=
−4.004E-05, CI=−9.432E-05 to 1.423E-05, p= 0.149) and
gender (WGS-LTL: β=−0.121, CI=−2.292 to 2.049, p=
0.913, qPCR-LTL: β= 0.001, CI= 4.947E-04 to 0.002, p=
0.224) in influencing LTL.

There is evidence that excessive sleep may be associated with
not only increased morbidity and mortality32, but also shorter
telomeres33,34. This could result in increased LTL heterogeneity
in the adequate sleep group (>7 h). We thus repeated the analysis
with the adequate sleep group further stratified into two groups;
adequate sleep (>7 h but <= 9 h) and long sleep (>9 h), with the
adequate sleep group set as reference (Supplementary Fig. 1). For
both the WGS-based (β=−333.372, CI=−604.138 to −62.606,
p= 0.019) and qPCR-based cohorts (β=−0.262, CI=−0.436 to
−0.087, p= 0.004), the difference in LTL between the insufficient
sleep and adequate sleep groups remained significant. Likewise,
there was no significant difference in LTL between the adequate
sleep and long sleep groups in both cohorts (WGS-based: β=
350.281, CI=−149.690 to 850.251, p= 0.175, qPCR-based: β=
−0.201, CI=−0.571 to 0.168, p= 0.289), although there was a
non-significant reduction in LTL in the long sleep group of the
qPCR-based cohort.

Discussion
We have shown in a sizeable cohort of 482 individuals how sleep
metrics from consumer wearables can be used in biomedical
research, particularly in the context of population health studies.
This multi-modal cohort is one of the largest to-date with con-
sumer wearable sleep metrics. Our comparison of objective
wearable-derived sleep metrics against subjective measures
obtained through the PSQI provides insights into the character-
istics of these two modalities. The weak correlation between
wearable-derived and self-reported TST is consistent with pre-
vious studies comparing objectively measured TST (PSG and
actigraphy) with self-reported TST35–37. For example, Landry
et al. reported a correlation of 0.29 between actigraph-derived and
self-reported TST, despite a longer minimum tracking duration
than ours (14 nights vs 3 nights). Concordance was poorer when
we compared wearable-derived SE and number of nocturnal
awakenings with their self-reported counterparts. This is again
consistent with previous reports of no correlation between
objectively-measured (PSG and actigraphy) and PSQI-derived
SE37,38. Our comparison of wearable-derived sleep metrics
against volunteer-provided responses to the PSQI—an instrument
frequently used in population studies, will inform investigators
considering using wearables in future studies. Furthermore, the
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Fig. 3Wearable-derived TST predicts leukocyte telomere length. a Adjusted WGS-LTL by age-group. b Adjusted wearable-derived TST and adjusted WGS-
LTL. c Adjusted WGS-LTL and adjusted qPCR-LTL of volunteers with insufficient (<5 h) and adequate (>7 h) of TST. d Adjusted wearable-derived TST and
adjusted qPCR-LTL. Asterisks denote significance of component score in linear model compared to reference score of 0. **p < 0.01, ***p < 0.001. LTL
leukocyte telomere length, WGS-LTL LTL estimated using whole-genome sequencing, qPCR-LTL LTL estimated using quantitative PCR, TST total sleep
time, bp base pairs, T/S T/S ratio. All LTL values are adjusted for age, gender, ethnicity, and BMI
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limitations highlighted present opportunities for researchers to
develop algorithms that can more accurately detect wake states.
Indeed, newer generations of Fitbit wearables (e.g., Alta HR)
combine accelerometer and HR variability data to accurately stage
sleep, increasing wake detection specificity to over 88%20.

The questionnaire responses from volunteers allowed us to
study how wearable-derived sleep metrics are influenced by
demographic, socioeconomic and lifestyle factors. Among others,
we showed that wearable-derived TST was associated with age,
gender, ethnicity, occupation type, and even habitual alcohol
consumption. With many countries realizing the importance of
population health studies, the use of consumer wearables to
identify demographic, socioeconomic and lifestyle factors asso-
ciated with sleep duration could provide vital insights into
population sub-groups at risk for poorer health outcomes due to
insufficient sleep.

Our analysis on how wearable-derived TST and SE relate to
various CVD risk markers demonstrate the utility of wearable-
derived sleep metrics in biomedical research. Xu et al. previously
described a link between habitual sleep duration estimated using
Fitbit Charge HR devices and BMI in a predominantly European-
American cohort of 471 individuals25. We identified in an Asian
cohort this relationship despite a considerably shorter average
tracking duration (4 nights vs 78 nights), suggesting that sleep
metrics from even short studies can be useful. One novel aspect of
this study was our analysis of wearable-derived SE against CVD
risk markers. Our findings of links between SE and three obesity
markers; BMI, WC and WHtR, is supported by previous studies
performed using orthogonal approaches such as PSG and
actigraphy39,40. This indicates that wearables can contribute
beyond TST to health cohort studies, notwithstanding current
limitations to the accuracy of wearable-derived SE. The paucity of
associations between wearable-derived sleep metrics and clinical
parameters such as FBG (a marker of insulin sensitivity), and
blood pressure could be due in part to the cohort size, and
highlights the need for wearables to be included in larger
population-scale cohort studies in order to thoroughly assess their
utility.

In both analyses of cohort demographics and CVD risk mar-
kers, no significant associations were identified when self-
reported TST was used. This stood in contrast to wearable-
derived TST, which showed multiple significant associations.
Several of these associations have been previously described; for
example, shorter TST has been linked to older age41, male
gender25,41, manual labor42, and increased BMI1,25. Several fac-
tors may explain the poor performance of self-reported TST.
First, wearable-derived TST is more precise than self-reported
TST (minute-level vs hour-level resolution), resulting in higher
sensitivity to small differences in TST. Second, self-reported TST
is only moderately correlated with TST objectively measured
using PSG35,36 or actigraphy37. In contrast, TST from consumer
wearables (e.g., Fitbit) are highly correlated with TST measured
using PSG20,43,44 and actigraphy23. Third, the subjectivity of self-
reported TST exposes it to biases; one study found that while men
self-reported longer TST than women, actigraphy data indicated
the opposite45. Questionnaires and PSG are on opposite ends of
the sleep detection accuracy spectrum17, whereas contact-based
approaches such as actigraphy and consumer-wearables are sec-
ond only to PSG in accuracy. Our study therefore, reinforces the
utility of consumer wearables as a low-cost yet objective source of
sleep metrics in population cohort studies.

Beyond comparisons with the usual clinical health markers,
our study provides a novel demonstration of the utility of
wearable-derived sleep data in the study of biological aging. We
showed that in a normal free-living cohort, individuals with short
habitual sleep duration experienced premature telomere attrition.

Previous studies of this phenomenon have either used sleep
questionnaires33,46–48 or cohorts of sleep disorder patients49,50.
As premature telomere shortening has been linked to the early
onset of various age-related diseases51 and all-cause
mortality52,53, new evidence on the link between insufficient
sleep and accelerated aging such as this are vital in helping shape
public policy (e.g., later school start times, altered work hours and
schedules, etc.) and to promote healthier sleep habits among the
public. This finding is especially relevant to Singapore, a devel-
oped nation whose citizenry is among the most sleep-deprived in
the world41,54. We did not identify in our study statistically sig-
nificant shorter LTL among volunteers with long wearable-
derived TST. This could be due to the small numbers of volun-
teers who are long sleepers. In fact, only one volunteer had
wearable-derived TST exceeding 10 h. Our use of (1) wearables
for sleep tracking and (2) WGS for LTL estimation in this study,
demonstrate the versatility that emerging technologies can bring
to population cohort studies by providing added behavioral and
phenotypic data beyond their primary functions.

In summary, our study has demonstrated various aspects in
which sleep metrics from wearables can be used in cohort studies.
Apart from comparing wearable-derived and self-reported sleep
metrics, our work has shown that wearables can be used to study
how sleep relates to demographic, socioeconomic and lifestyle
factors, as well as various markers of health and aging. The
increasing ubiquity of wearables and other forms of digital health,
represent a rich source of behavioral data that can be tapped by
investigators running cohort studies. Beyond the use of wearables
as study-provided devices, a BYOD (bring your own device)
model, where participants share data from their own wearables
with investigators through application programming interfaces
(APIs), is also possible. This is particularly attractive as the BYOD
model allows for much longer tracking durations with minimal
incremental cost. At the same time, the use of wearables and
other digital health devices in population health studies can cat-
alyze further development of digital applications that promote
healthy behavior, including sleep habit.

Methods
Study volunteers and ethics statement. Volunteers responding to print adver-
tisements were recruited as part of the SingHEART/Biobank study using a protocol
and written informed consent form approved by the SingHealth Centralized
Institutional Review Board (ref: 2015/2601). The cohort’s details and its inclusion
criteria have been previously described24. Among others, volunteers underwent an
activity tracking study using a consumer wearable (Fitbit Charge HR) and detailed
clinical profiling of various CVD risk markers (anthropometry, blood pressure,
lipid panel, FBG, etc.). In addition, DNA was extracted from volunteer whole blood
samples for molecular studies. After evaluation for completeness of sleep and
activity tracking data, and the removal of subjects with extreme outlier activity
metrics, 482 volunteers were included in this study. The sample size is comparable
to, or exceeds that of similar studies18,19.

Processing of wearable sleep metrics. For each volunteer, we extracted their
Fitbit data (activity, heart rate and sleep) using the Fitbit Web API (https://dev.
fitbit.com/reference/web-api/quickstart/). Data completeness was evaluated by
availability of HR data, and days with no intraday steps were excluded24. We
considered days with at least 20 h of data to be complete, and only volunteers with
at least three data-complete days were included. Detailed sleep tracking data from
Fitbit was obtained in the JSON (JavaScript Object Notation) format, and pro-
cessed using an R. For each day, we summed the duration of all sleep sessions
starting between 8 PM and 8 AM. We then averaged daily sums for each volunteer
to obtain the TST. Sleep hour was determined by calculating the average start time
of sleep sessions occurring between 8 PM and 8 AM with duration more or equal to
3 h. Wake hour was determined by averaging the end time of sleep sessions. SE was
computed in a similar fashion, except that for each day, the average SE of sleep
sessions was obtained. In addition, we estimated the number of nocturnal awa-
kenings by averaging daily total wake counts.

Questionnaires. The volunteer recruitment process included the administration of
several questionnaires. This included the SingHEART patient questionnaire which
covered demographics, socioeconomic factors, medical history, smoking history,
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alcohol consumption patterns, exercise and dietary habits. The General Practice
Physical Activity Questionnaire (GPPAQ) was used to estimate physical activity
levels as previously described24. Furthermore, the Pittsburgh Sleep Quality Index
(PSQI) questionnaire, which assesses sleep quality and disturbances over a one-
month time interval, was also administered27. Volunteers were asked about their
sleep habits, for example their bed time, hours of sleep per night, sleep trouble and
sleep quality. The PSQI contains 19 self-rated questions and 5 questions rated by
the bed partner or roommate (if one is available). These 19 self-rated items are then
combined to produce seven component scores, each of which has a range of 0–3.
Components 3 and 4, as well as Question 5b were examined in this study due to
their relevance to our wearable-derived sleep metrics (TST, SE and nocturnal
awakenings respectively).

Association tests. Multiple linear regression analyses described in this study were
conducted using the GLM (generalized linear model) function in R and Gaussian
error distribution was used. When gender was considered as a covariate, the female
gender was set as the reference level. Whereas the following are the reference level
for each of the socioeconomic factor when it was set as a covariate: “Public-
housing” for residence type; “Others” for education level and “Manual-labor” for
occupation type. For lifestyle factors, the reference level for alcohol and caffeine, tea
and green tea consumption is “No”; the reference levels for smoking and exercise
status are “Ex-smoker” and “Never/hardly” respectively.

For linear regression analysis between wearable-derived sleep metrics and CVD
risk markers, three models were used. Age, gender, ethnicity, daily step counts were
included as covariates. For Model 1 and Model 2 which considered TST and SE-
based sleep metric, the model is, respectively, Marker ~ Age+Gender+ Ethnicity
+AverageDailyTotalSteps+ TST and Marker ~ Age+Gender+ Ethnicity+
AverageDailyTotalSteps+ SE. Whereas for Model 3 which includes both TST and
SE, the model is Marker ~ Age+Gender+ Ethnicity+AverageDailyTotalSteps+
TST+ SE. For linear regression analysis between wearable-derived TST metrics
and socioeconomic factors, the following model was used: TST ~ Age+Gender+
Ethnicity+ SocioeconomicFactor. In addition, linear regression analysis between
wearable-derived TST metrics and LTL was done by using this model: LTL ~ Age
+ Gender + Ethnicity + BMI + TST. For analysis of interactions between
wearable-derived sleep metrics and age or gender, the model used was LTL ~ TST *
Age+Gender+ Ethnicity+ BMI and LTL ~ TST * Gender+Age+ Ethnicity+
BMI, respectively.

DNA extraction. Genomic DNA was extracted from volunteer whole blood spe-
cimens using the Chemagic DNA blood kit (Perkin Elmer, MA) following man-
ufacturer’s protocol. The quality and quantity of extracted genomic DNA were
assessed using LabChip DS (Perkin Elmer).

Telomere length estimation. To estimate LTL from WGS data (WGS-LTL), we
used the Telomerecat31 program, which does so by calculating the ratio between
read-pairs completely mapping to the telomere and those that span the telomere
boundary. As part of the SingHEART/Biobank study, we had sequenced the gen-
omes of 546 volunteers (of which 175 overlapped with this study) at a target depth
of 30×. The sequencing was performed by commercial sequencing providers using
the Illumina Hiseq X platform. Telomerecat was used to estimate WGS-LTL for
this dataset. Briefly raw sequencing reads in FASTQ files were aligned to the
human reference genome (hs37d5) using BWA-MEM version 0.7.1255. The
resulting BAM files were further processed using Sambamba version 0.5.856 to sort
the reads and flag duplicates. Telomerecat was run in two steps. First, the bam2-
telbam command was run on individual BAM files to generate telbam files, which
are small BAM files containing only sequencing reads relevant to LTL estimation.
The telbam2length command was then executed to generate LTL estimates for the
entire 546 set of telbam files. Finally, we used linear regression to correct for
different sequencing runs. BAM files containing telomeric and subtelomeric
sequencing reads are available in the European Nucleotide Archive (ENA, acces-
sion number PRJEB29577). WGS data for the individuals are deposited in the
European Genome-phenome Archive (EGA, accession number
EGAS00001003570) and are available subject to Data Access Committee (DAC)
approval.

Telomere length measurement by qPCR. We used the qPCR method described
by Cawthon57,58 to estimate LTL. The qPCR experiments were performed by
operators blinded to participant characteristics. Briefly, two primer pairs are used,
with one targeting telomere repeats (T) and another targeting a 36B4, a known
single-copy gene (S). For a given sample, the ratio between T and S amplification
products (T/S ratio) is calculated. This T/S ratio correlates with telomere length,
and the relative difference in T/S ratio between samples is proportional to the
relative difference in their telomere lengths. Experimental details are as follows:
Each genomic DNA sample was normalized to 35 ng/μL. Sequences of T and S
primers and their final concentration are provided in Supplementary Table 6. A
reference DNA sample (Promega, cat. no.: G1521) was diluted serially threefold
from 109.0 ng/μL to 36.3, 12.1, 4.0, and 1.3 ng/μL to generate a standard curve. All
samples were run in triplicate and the telomere and 36B4 PCR performed on
two separate plates in identical well positions. Each reaction mix was prepared in

10 μL containing 1× PowerUp SYBR Green Master Mix (Applied Biosystems),
270–300 μM forward and 500–900 nM reverse primers and 35 ng gDNA or
reference DNA. All PCRs were performed on StepOnePlus Real Time PCR system
(Applied Biosystems) and began with Stage 1: 2 min at 50 °C, 2 min at 95 °C; Stage
2: 40 cycles of 15 s at 95 °C, 15 s of 54 °C (Telomere PCR) or 58 °C (36B4 PCR),
1 min of 72 °C with signal acquisition. The T and S concentrations were inter-
polated using the standard curve and the averages of T and S concentrations were
calculated from the triplicates. Any outliers were removed or repeated. Inter-plate
variability was controlled using a normalization factor derived from a control
sample (Promega, cat. no.: G3041) running in triplicates in each run. All T and
S concentrations were corrected using the normalization factor. As the experiment
was conducted in two batches, linear regression was used to adjust for batch effects
in the T and S concentrations prior to calculating the final T/S ratios.

Statistics and reproducibility. All statistical analyses in this study were performed
using the R statistical environment. Correlations between continuous values (e.g.,
wearable-derived TST) and discrete questionnaire responses (e.g., PSQI scores)
were calculated as Spearman’s rank correlation coefficients (denoted as rs), whereas
correlations between pairs of continuous values were calculated as Pearson cor-
relation coefficients (denoted as rp). The relationship between TST and LTL was
explored in two separate cohorts. First, a discovery cohort comprising 175 indi-
viduals with LTL estimated using WGS and second, a validation cohort comprising
305 individuals with LTL estimated using qPCR. The validation cohort, apart from
demonstrating the reproducibility of the observation made in the discovery cohort,
also showed that the relationship was present regardless of method used to estimate
LTL (WGS or qPCR).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Study participant characteristics (used to generate Table 1) are available in
Supplementary Data 1 and Figshare (https://doi.org/10.6084/m9.figshare.7835378). All
data (including raw wearable metrics) are available in Supplementary Data 2 and
Figshare (https://doi.org/10.6084/m9.figshare.7835393). Quality control metrics
(standard curves, amplification efficiencies, IC values, etc.) for qPCR assays are available
in Supplementary Data 3 and Figshare (https://doi.org/10.6084/m9.figshare.9042542).

Code availability
R code used in the analyses and figures are available in Supplementary Data 2 and via
Figshare (https://doi.org/10.6084/m9.figshare.7835393).
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