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Abstract: Balneotherapy is a clinically effective complementary approach in the treatment of
low-grade inflammation- and stress-related pathologies. The biological mechanisms by which
immersion in mineral-medicinal water and the application of mud alleviate symptoms of several
pathologies are still not completely understood, but it is known that neuroendocrine and
immunological responses—including both humoral and cell-mediated immunity—to balneotherapy
are involved in these mechanisms of effectiveness; leading to anti-inflammatory, analgesic,
antioxidant, chondroprotective, and anabolic effects together with neuroendocrine-immune
regulation in different conditions. Hormesis can play a critical role in all these biological effects and
mechanisms of effectiveness. The hormetic effects of balneotherapy can be related to non-specific
factors such as heat—which induces the heat shock response, and therefore the synthesis and release
of heat shock proteins—and also to specific biochemical components such as hydrogen sulfide (H2S)
in sulfurous water and radon in radioactive water. Results from several investigations suggest that
the beneficial effects of balneotherapy and hydrotherapy are consistent with the concept of hormesis,
and thus support a role for hormesis in hydrothermal treatments.

Keywords: spa therapy; mud therapy; hydrotherapy; hormesis; immune response; inflammation;
oxidative stress; heat shock proteins; pain; rheumatic diseases

1. Introduction

Hormesis is a biphasic dose-response phenomenon in which exposure of a cell or organism to
a low dose of a chemical agent or condition induces stimulation or adaptive beneficial effects, while
higher doses cause inhibition or toxic effects [1,2]. This response to low doses of stress is considered
an adaptive compensatory process or adaptive stress response following an initial disruption in
homeostasis, enhancing the ability of the organism to withstand more severe stress [1,2]. Therefore, a
hormetin has been defined as any condition that may be potentially hormetic in physiological terms
by activating or upregulating one or more cellular and molecular pathways of stress response that
protect against a similar but more severe stress [3]. Apart from chemicals and toxins, there are several
conditions and factors that can be considered hormetins: biological hormetins such as infections,
hypoxia/ischemia, endogenous metabolic products, dietary caloric restriction, intermittent fasting,
and micronutrients; psychological hormetins such as mental challenge and meditation; and physical
hormetins such as exercise, heat, and radiation [3,4]. Indeed, repeated mild heat stress-induced
hormesis affects various parameters of cellular aging and other functional characteristics, such
as differentiation, wound healing and angiogenesis. These hormetic effects lead to a significant
biological response that results in an overall improvement of the living system [5]. In this context,
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thermotherapeutic strategies such as balneotherapy and hydrotherapy can be considered potential
hormetic interventions.

In Medical Hydrology and Physical Medicine, spa therapy consists of multiple techniques
based on the healing effects of water, including balneotherapy and hydrotherapy. Balneotherapy
is the set of methods and practices which, based on scientific evidence, use medically and legally
recognized mineral-medicinal waters, muds, and natural gases from natural springs for therapeutic
purposes inside the facilities of thermal spa centres. Particularly, muds (or peloids) are maturated
muddy suspensions composed of a complex mixture of fine-grained materials of geologic origin,
mineral water, and commonly organic compounds from biological metabolic activity. Thus, mud
therapy or pelotherapy is a balneological intervention that consists of the external application of
mud for therapeutic purposes [6]. Temperature has a central role in the effects of balneotherapy.
Mineral-medicinal water and mud are generally applied hot since they are excellent vehicles for
the transference of heat—being able to hold heat and release it slowly—so these treatments can be
considered thermotherapeutic interventions. The peculiarity of balneotherapy is that its beneficial
effects on the organism are brought about not only by the physical properties of mineral-medicinal
water and mud, but also by their chemical and biological composition. Conversely, in other spa
treatments such as hydrotherapy—in which plain tap water is used—only the physical properties of
water (temperature, hydrostatic pressure, hydrodynamics, buoyancy, viscosity, electric conductivity,
etc.) take part in the beneficial effects of the intervention [6].

In the last years, there has been an increase in the number of investigations related to the biological
effects and mechanisms of effectiveness of these treatments, in which hormesis could play a critical role.
In this review we will summarize the current knowledge about the clinical benefits and physiological
effects of balneotherapy on the immune and stress response, and most importantly, we will discuss the
recent progress made in the study of the hormetic mechanisms of hydrothermal treatments, focusing
on balneotherapy and its different modalities.

2. Balneotherapy as a Strategy for Health

Balneotherapy and mud therapy have been used empirically since time immemorial to treat a
wide range of conditions [7]. Thermal baths are considered an integral part of traditional medicine in
many cultures and countries (France, Italy, Spain, Portugal, Germany, Austria, Switzerland, Turkey,
Poland, Czech Republic, Hungary, Romania, Russia, Israel, Japan and others), and nowadays they are
a relevant part of the public health systems of many countries within and outside Europe [8].

Balneotherapy is an effective, well tolerated, complementary approach in the treatment of several
pathologies—mainly those related to chronic inflammation—such as cardiovascular, respiratory,
gastrointestinal, endocrine, and neurological conditions, and more importantly in skin and rheumatic
disorders [9,10]. In the recent decades, more and more studies (including high-quality meta-analysis
and systematic reviews) have reported the beneficial effects of balneotherapy, including mud therapy,
on different clinical outcomes in patients with osteoarthritis (OA) [11–16], rheumatoid arthritis
(RA) [17–19], fibromyalgia (FM) [20–23], and other rheumatic conditions [24]. Of all these pathologies,
OA is the most commonly treated with balneological interventions. The main clinical parameters
improved by balneotherapy and mud therapy in OA are analgesic drug consumption, function,
stiffness, pain, and quality of life [13,14]. Since these therapies have little to no adverse effects, they
are especially important for OA patients, who usually are elderly patients with multimorbidity- and
polypharmacy-related risk of adverse events. In fact, the most recent guidelines from the Osteoartritis
Research Society International (OARSI) state that balneotherapy is appropriate in OA patients with
comorbidities, for whom treatment options are limited [25].

Balneotherapy causes local and generalized physiological effects in the organism, which are
exerted through both physical mechanisms—mainly linked to heat therapeutic effects—and chemical
and biological properties of the agents [9]. While the former are well known [26], the latter are difficult
to identify and assess [27]. Indeed, as a result of the elevated application temperature—generally
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ranging from 38 to 42 ◦C—thermotherapeutic effects are the basis of these treatments [27,28].
Notwithstanding, absorption of biologically active inorganic and organic substances through the
skin also play a role in the effectiveness of balneotherapy. In vitro and in vivo studies have established
that some water-soluble minerals are able to permeate human skin [29–31] and seem to be the key
mechanism responsible for the improvement in some clinical outcomes, in both balneotherapy and
mud therapy [30,32–39], thus implying that those beneficial effects are not exclusively linked to
the action of heat. Despite this increasing evidence, it is difficult to analyze the specific effects of
each mechanism and each chemical component separately. Each mineral-medicinal water and mud
around the world has different distinctive physical properties and chemical composition. According to
their predominant ions and gases, mineral-medicinal waters may be classified as chlorated, sulfated,
bicarbonated, ferruginous, carbogaseous, sulfurous and radioactive [40]. It is known that, generally,
different diseases require agents with different chemical compositions in order to attain therapeutic
results [41]. However, the exact components that are most suitable for each pathology and the ideal
concentration of each element that is necessary for obtaining optimal biological and clinical outcomes
have not yet been completely elucidated.

It is plausible to think that the mechanism of action probably results from a complex synergistic
combination of several factors [27,39]. Whichever of these mechanisms are implicated to a lesser or
larger extent, the physiological responses arising from balneotherapy consist mainly of neuroendocrine
and immunological effects that have been most widely studied in rheumatic pathologies.

3. Balneotherapy and Immune System

The biological mechanisms by which immersion in mineral-medicinal water and the application
of mud alleviate symptoms of several pathologies are still not completely understood. For the last two
decades, immunological mechanisms of effectiveness have been studied in a number of investigations,
pointing to anti-inflammatory effects that could underlie the clinical benefits of balneotherapy.

In several low-grade inflammation-related pathologies—especially in rheumatic diseases—
balneotherapy and mud therapy have been reported to cause a reduction in serum concentrations of
pro-inflammatory cytokines TNF-α [42–46] and IL-1β [43,47], and regulatory cytokine IL-6 [46,48],
as well as an increase in anti-inflammatory growth factor IGF-1 [38,42]. It is noteworthy that, in
a recent study, our group carried out a comprehensive evaluation of the effect of mud therapy on
the cytokine profile of OA patients. Our data showed a drastic decline in the unhealthily elevated
systemic levels of IL-1β, TNF-α, IL-8 (remarkably for the first time), IL-6 and TGF-β, thus confirming
a global anti-inflammatory effect of this strategy [49]. Mud therapy can also decrease circulating
levels of the adipokines adiponectin and resistin in OA [50,51]. All these cytokines and adipokines
are important mediators of inflammation and cartilage metabolism [52], and thus their modulation
after balneotherapy leads to anti-inflammatory-mediated chondroprotective effects that may play a
beneficial role in rheumatic conditions such as OA.

Similarly, matrix metalloproteinases (MMP) are involved in cartilage degradation [53]. MMP-3
serum levels decrease after mud therapy in OA patients [54]—either as a direct effect of the
intervention or as a consequence of the reduction in pro-inflammatory mediators such as cytokines that
promote MMP secretion—suggesting that mud therapy contributes to extracellular matrix integrity.
In fact, serum cartilage oligomeric matrix protein (COMP) concentration—an indicator of cartilage
turnover—decreases after balneotherapy [45].

Moreover, C-reactive protein (CRP) levels—which rise in response to inflammation—decrease
after balneotherapy in patients with rheumatic and cardiovascular pathologies [46,55,56].
Prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) are other important inflammatory mediators [57].
There is evidence that balneotherapy and mud therapy reduce circulating levels of these biomarkers
in patients with rheumatic pathologies [47,58]. It is well known that the inflammatory response
plays a key role in the development and persistence of many pathological pain states. Since they
are part of the inflammatory response, certain pro-inflammatory cytokines such as IL-1β, IL-6, and
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TNF-α are strongly involved in the process of inflammatory and neuropathic pain. They can directly
modulate neuronal activity in the peripheral and central nervous system and promote the production
of other mediators related to inflammation and pain—such as substance P and PGE2—contributing to
hyperalgesia and allodyinia [59]. In this way, reduction in these mediators’ levels after balneotherapy
can also be associated with the analgesic effects of the treatment, as demonstrated by concomitant
declines in perceived pain [47,49].

Cellular immune response also participates in the beneficial effects of balneotherapy, although
not many studies have been conducted regarding this aspect of the immune response. Recently,
our research group has found that OA patients presented a reduction in the circulating neutrophils’
functional capacity—i.e., phagocytic and microbicidal activities [60]—that improved significantly after
mud therapy. Circulating monocytes’ phenotype and functional capacity seem to be also involved in
the innate/inflammatory response induced by this treatment. In addition, changes in the percentage
of circulating regulatory T cells are also implicated in the cytokine-mediated anti-inflammatory effect
of balneotherapy (unpublished data, submitted for publication).

4. Balneotherapy and Stress

It is known that the hypothalamic-pituitary-adrenal (HPA) axis is activated in response to
various stress factors—including hyperthermia—leading to β-endorphin (a peptide with morphine-like
analgesic effects [61]), adrenocorticotropic hormone (ACTH), and cortisol release [62], the latter being
especially important because of its anti-inflammatory effects and ability to inhibit the production of
most cytokines [63]. At the same time, activation of the sympathetic nervous system (SNS) by stressors
stimulates the release of catecholamines [62].

Hyperthermia-induced activation of the HPA axis and SNS has been reported mostly in healthy
subjects undergoing plain hydrotherapy or sauna baths [64,65]. This activation was manifested by
increased circulating concentrations of ACTH [66,67], cortisol [66,68], growth hormone (GH) [68,69],
prolactin [70,71], β-endorphins [66,71,72], and noradrenaline (NA) [67,69,70,73]. However, there is
scarce evidence on the specific effects of balneotherapy on the neuroendocrine/stress response. Besides,
it is important to study these effects in different pathologies and conditions, since the presence of
HPA axis and neuroendocrine-immune dysregulations in rheumatic disorders and chronic low-grade
inflammatory pathologies is very common [60,63,74].

After balneotherapy, ACTH, cortisol, GH, and prolactin systemic levels increase in patients with
different pathologies, including inflammatory ones [75]. In FM patients, for example, mud therapy
induces an increase in ACTH, cortisol, and β-endorphin systemic concentrations [76]. Recently,
our group reported a neuroendocrine-immune regulation in OA patients undergoing mud therapy:
an increase in circulating cortisol concentrations that contributes to decrease the elevated systemic
levels of inflammatory cytokines in this pathology [49]. These results seem to be in line with the
above-mentioned studies in hydrotherapy, thus suggesting that the effects of balneotherapy on the
neuroendocrine system are mainly due to heat stress caused by the elevated temperature of application.

In addition, heat stress induces a cellular response, the heat shock (HS) response, in which heat
shock proteins (Hsp) are synthesized and released. Maintenance of the HS response by repeated mild
heat stress causes hormetic effects in the organism [77]. In this way, HS response and Hsp could play a
role in the beneficial effects of balneotherapy [78].

Figure 1 shows a proposed model of a mechanism of action of balneotherapy in OA patients
integrating its effects on the immune and stress responses.
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Figure 1. Neuroendocrine-immune stabilization as a proposed mechanism of effectiveness of a cycle 
of balneotherapy underlying pain alleviation in osteoarthritis (OA) patients [49]. Elevated systemic 
concentrations of pro-inflammatory cytokines are unable to activate cortisol release in OA patients, 
and the low concentration of cortisol cannot inhibit the high systemic levels of pro-inflammatory 
cytokines [60] (symbols and text in red). Balneotherapy increases systemic cortisol levels that in turn 
induce an anti-inflammatory response that is manifested by a decrease in the concentration of 
circulating pro-inflammatory cytokines (symbols and text in green). Balneotherapy decreased the 
unhealthily elevated eHsp72 concentrations in OA patients, also contributing to the anti-
inflammatory effects [49]. Up and down arrows represent increases and decreases in the systemic 
concentrations of cytokines, eHsp72, and cortisol. 
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The hormetic effects of balneotherapy are related to different factors. The main factor that is 
common to all types of mineral-medicinal waters and muds is heat. Other factors are specific 
biochemical components of water such as hydrogen sulfide (H2S) and radon. 

5.1. Heat Stress Hormetic Effects in Balneotherapy 

The therapeutic capacity of heat consists of changes in body tissue temperature for a certain time 
with the aim of producing physiological responses that contribute to support healing processes or 
alleviate pain and other symptoms [26,64], and it is linked to the ability of organisms to respond to 
stress and produce cellular responses of adaptation [3]. Whereas severe heat stress leads to cellular 
damage and cell death, mild heat stress induces the HS response, which protects cells and organisms 
from severe damage, allows resumption of normal cellular and physiological activities, and leads to 
a higher level of thermotolerance [79]. An important aspect of stress responses is that they have the 
potential to induce higher levels of stress tolerance and greater resistance to subsequent stress 
damage from more than one type of stress. In this way, mild heat stress can protect from oxidative 
stress or toxin damage [2,80]. In the HS response, cells activate a signaling pathway leading to the 
expression of Hsp. The Hsp70 (70 kDa heat shock protein) family consists of a class of Hsp that includes 
the stress-inducible Hsp70 (Hsp72, 72 kDa). Under normal physiological conditions, Hsp72 is expressed 
at low levels. However, following stress stimuli such as heat and inflammation, synthesis of 
intracellular Hsp72 (iHsp72) and release of extracellular Hsp72 (eHsp72) increase markedly. iHsp72 
plays a crucial role in cytoprotection and cytotoxicity tolerance as an intracellular molecular chaperone 
involved in cell aging, survival, and protection against potentially harmful stress stimuli [81–83].  

Figure 1. Neuroendocrine-immune stabilization as a proposed mechanism of effectiveness of a cycle
of balneotherapy underlying pain alleviation in osteoarthritis (OA) patients [49]. Elevated systemic
concentrations of pro-inflammatory cytokines are unable to activate cortisol release in OA patients,
and the low concentration of cortisol cannot inhibit the high systemic levels of pro-inflammatory
cytokines [60] (symbols and text in red). Balneotherapy increases systemic cortisol levels that in
turn induce an anti-inflammatory response that is manifested by a decrease in the concentration of
circulating pro-inflammatory cytokines (symbols and text in green). Balneotherapy decreased the
unhealthily elevated eHsp72 concentrations in OA patients, also contributing to the anti-inflammatory
effects [49]. Up and down arrows represent increases and decreases in the systemic concentrations of
cytokines, eHsp72, and cortisol.

5. Balneotherapy as a Hormetic Strategy

The hormetic effects of balneotherapy are related to different factors. The main factor that
is common to all types of mineral-medicinal waters and muds is heat. Other factors are specific
biochemical components of water such as hydrogen sulfide (H2S) and radon.

5.1. Heat Stress Hormetic Effects in Balneotherapy

The therapeutic capacity of heat consists of changes in body tissue temperature for a certain time
with the aim of producing physiological responses that contribute to support healing processes or
alleviate pain and other symptoms [26,64], and it is linked to the ability of organisms to respond to
stress and produce cellular responses of adaptation [3]. Whereas severe heat stress leads to cellular
damage and cell death, mild heat stress induces the HS response, which protects cells and organisms
from severe damage, allows resumption of normal cellular and physiological activities, and leads to
a higher level of thermotolerance [79]. An important aspect of stress responses is that they have the
potential to induce higher levels of stress tolerance and greater resistance to subsequent stress damage
from more than one type of stress. In this way, mild heat stress can protect from oxidative stress or
toxin damage [2,80]. In the HS response, cells activate a signaling pathway leading to the expression
of Hsp. The Hsp70 (70 kDa heat shock protein) family consists of a class of Hsp that includes the
stress-inducible Hsp70 (Hsp72, 72 kDa). Under normal physiological conditions, Hsp72 is expressed at
low levels. However, following stress stimuli such as heat and inflammation, synthesis of intracellular
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Hsp72 (iHsp72) and release of extracellular Hsp72 (eHsp72) increase markedly. iHsp72 plays a crucial
role in cytoprotection and cytotoxicity tolerance as an intracellular molecular chaperone involved in
cell aging, survival, and protection against potentially harmful stress stimuli [81–83].

Of the few studies on Hsp and spa therapy that exist, most of them have assessed hydrotherapy
rather than balneotherapy. The effects of hydrothermal therapy have been compared to those
of exercise [84]—a hormetin with bioregulatory effects frequently used as a therapy for different
pathologies [4]—since both strategies have the potential to improve impaired insulin sensitivity
and boost endothelial expression of the constitutive isoform of nitric oxide synthase, promoting
vascular health [84]. In fact, hydrotherapy at 38–41 ◦C (18 sessions of 30 min) reduced body weight,
fasting plasma glucose levels and mean glycated hemoglobin levels in patients with type 2 diabetes
mellitus [85]. In rats, bathing for 15 min in hot plain water (40–42 ◦C) increased Hsp72 heart tissue
concentration contributing to cardioprotection against ischemia injury [86], and increased Hsp72 artery
expression, mediating the suppression of neointimal thickening in injured arteries [87]. Furthermore,
Bathaie and co-workers [88] found that diabetic rats undergoing hydrotherapy at 42 ◦C (60 sessions
of 30 min each) presented improvements in lipid profile, antioxidant capacity, insulin secretion and
advanced glycation end (AGE) products, together with an increase in serum eHsp72 levels that
may be directly related to the beneficial effects of the therapy. In young and aged insulin-resistant
monkeys, hydrotherapy at 40 ◦C (10 sessions of 30 min) improved blood pressure, glucose values,
pancreatic responses to glucose challenge and tended to normalize glucose excursions, together with
significantly higher concentrations of muscle Hsp70. There were no adverse effects on organ or
cardiovascular health [89]. Krause and co-workers [90] proposed that all these cardiovascular and
metabolic benefits of hydrotherapy seem to be related to the induction of Hsp70 expression in response
to heat stress, which enhances the phosphorylation of protein kinase B (Akt), AMP-activated protein
kinase (AMPK), and endothelial nitric oxide synthase. Together, they could improve insulin signaling,
body composition, endothelial dysfunction, and the low-grade inflammation found in people with
diabetes [90]. These investigations support the safety and efficacy of hydrotherapy as a preventive and
therapeutic strategy in patients with metabolic syndrome that are too physically impaired to perform
exercise at optimal intensities.

Regarding treatments with mineral-medicinal waters and muds, no changes in Hsp60 serum levels
were found either after balneotherapy or hydrotherapy at 38 ◦C (15 sessions of 30 min) in patients with
degenerative musculoskeletal disease [55], probably because the temperature was not high enough
to elicit a response. Balneotherapy and mud therapy interventions (seven sessions, temperature and
duration unknown) have been shown to increase Hsp70 gene expression in healthy subjects [78].
Surprisingly, our research group recently found a reduction in systemic eHsp72 concentrations
in elderly OA patients after 10 sessions of balneotherapy with mud application at 38–42 ◦C for
60 min, in parallel with a marked decrease in the serum concentration of pro-inflammatory cytokines.
OA patients presented increased serum eHsp72 and pro-inflammatory cytokines concentrations at
baseline compared to age-matched healthy controls, and they reached similar values to those of controls
after the therapy [49]. Similarly, Uzunoğlu and co-workers [91] assessed the effect of balneotherapy
(39–40 ◦C for 15 min during three weeks) on Hsp in OA patients. Serum eHsp72 concentrations initially
increased after the first session, but at the end of the protocol eHsp72 systemic concentration was
lower than baseline, implying that an adaptation might occur at the end of the intervention.

This paradoxical effect is associated with the role of eHsp72 as an extracellular chaperokine [81,92].
Conversely to iHsp72 (anti-inflammatory and cytoprotective), eHsp72 can act as a pro-inflammatory
mediator, producing an immune/inflammatory response involving the activation of immune effector
cells and cytokine release [93], particularly inflammatory cells and pro-inflammatory cytokines with the
participation of nuclear factor kappa beta (NF-κβ) [94,95]. Moreover, due to its capacity to affect the
production of cytokines that in turn induce neuroendocrine responses, eHsp72 is an intrinsic component of
the immune-neuro-endocrine network [96]. In this way, modulation of eHsp72 circulating concentrations
after heat stress could trigger an Hsp-cytokine-HPA-cortisol anti-inflammatory feedback mechanism,
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leading to anti-inflammatory effects and neuroendocrine-immune regulation [49]. Therefore, it could
be speculated that the paradoxical decrease of eHsp72 in our study reflects a lower release of eHsp72
after a potential heat-induced iHsp72 increase in OA tissues such as chondrocytes [49]. Thus, the ratio
iHsp72/eHsp72 is crucial to evaluate the effectiveness of thermotherapy [97].

Together, these findings suggest a role for Hsp in the thermotherapeutic benefits induced by
balneotherapy, which supports the relationship between hormetic pathways and hydrothermal
treatments. Nevertheless, it is still necessary to determine the optimal intensity, duration, and interval
of heat stimulation for clinical application, particularly in inflammation- and stress-related illnesses.

5.2. Hydrogen Sulfide Hormetic Effects in Balneotherapy

The active molecule in sulfurous and sulfated mineral-medicinal waters is H2S, a hormetin that
can actively penetrate the skin. While high levels of H2S are extremely toxic, low levels are tolerated
and have potential cytoprotective effects, with anti-inflammatory and antioxidant applications [98,99].
H2S has important physiological functions as an endogenous cell signaling molecule on the regulation
of inflammation (through NF-κβ) and oxidative stress—acting as a reactive oxygen species (ROS)
scavenger and increasing levels of superoxide dismutase (SOD) and glutathione (GSH)—among many
other functions [100,101].

In vitro, several studies have demonstrated antioxidant and anti-inflammatory effects of this
type of waters. Recent investigations have confirmed that sulfurous waters have direct free
radical-scavenging activity, reduce ROS and reactive nitrogen species (RNS) released by human
neutrophils during respiratory bursts, and protect against oxidative DNA damage, thus contributing
to the therapeutic effect of these waters in inflammatory respiratory diseases [102–104]. Fioravanti and
co-workers [105] demonstrated that sulfated thermal waters inhibit nitric oxide (NO) production
and apoptosis induced by IL-1β in OA chondrocytes. Moreover, another investigation showed that
sulfurous water had higher antioxidant capacity against pro-oxidant stimuli than classical reference
antioxidants compounds, leading to a protective effect on DNA stability and cell viability of peripheral
blood mononuclear cells (PBMC) of both Alzheimer’s disease patients and healthy controls [106].
Furthermore, there is evidence that H2S treatment reduces both spontaneous and IL-1β-induced
secretion of IL-6, IL-8 and RANTES, as well as the expression of MMP-2 and MMP-14 in cultured
fibroblast-like synoviocytes from OA patients [107]. H2S also blocks the production of inflammatory
cytokines (IL-8, IL-1β, TNF-α, IL-6 and IL-10) and counterbalances the formation of ROS and RNS by
human monocytes [108], and reduces NO, PGE2, IL-6 and MMP13 released by OA chondrocytes by
downregulating genes involved in the synthesis routes of these molecules as well as NF-κβ nuclear
translocation [109].

In vivo, reductions in serum levels of malondialdehyde (MDA) and carbonyls, and in SOD and
catalase activity [45,110,111], have been found after balneotherapy with sulfurous water in rheumatic
diseases, thus reflecting a reduction in oxidative stress that may contribute to reduce the inflammatory
and catabolic status. Indeed, sulfurous waters are clinically effective in the treatment of OA and RA
patients [112,113].

Apart from bathing, another lesser-known modality of balneotherapy involves drinking
mineral-medicinal water, namely bicarbonated, carbogaseous, and sulfurous waters. In healthy
individuals, drinking sulfurous water for two weeks caused a decrease in their circulating levels of lipid
and protein oxidation products (MDA, carbonyls and advanced oxidation protein products) and an
increase in their antioxidant capacity and thiol levels [114]. The combination of bathing in and drinking
sulfurous water is a common practice, and it can increase plasma thiol levels and decrease circulating
levels of MDA, carbonlys, MMP-2, COMP and TNF-α in OA patients [45]. These improvements in the
redox status could potentially confer protection against age- and disease-related oxidative damage.
In a series of very interesting studies, beneficial effects of drinking sulfurous water on diabetes
and long term diabetes-associated complications have been reported. Diabetic rats drank sulfurous
mineral-medicinal water for 6–7 weeks. Anti-diabetic effects of sulfurous water were evidenced by
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increased serum concentrations of insulin, C-peptide and IGF-1, and by a reduction in glucose and
glycated hemoglobin levels, indicating a return towards normal conditions [115–117]. Cardiac GSH
and protein thiols increased while glutathione disulfide levels decreased, thus boosting the antioxidant
status. This improvement in cardiac GSH levels caused a reduction in NF-κβ as well as MMP-2,
procollagen-1 and Fas-L gene expression in the left ventricle. By counteracting these pro-apoptotic
and pro-fibrogenic factors, sulfurous mineral water prevented the development of fibrosis in the
heart [115]. Regarding diabetic nephropathy, sulfurous water counteracted the elevation of renal
thiobarbituric acid reactive substances and replenished GSH levels in diabetic rats with impaired
kidney function. Improvements in renal redox balance were also reflected on improved kidney
function [117]. Diabetes also impairs testicular function, and drinking sulfurous water improved the
seminiferous tubule structure as well as the number of spermatogenic cells and testosterone levels
in diabetic rats, probably due to an increase in testicular GSH by blocking the overexpression of
apoptosis-related regulatory proteins such as Bax/Bcl-2, cytochrome c, caspase-9 and -3, and p53 [116].

From all these studies, it can be established that balneotherapy using waters rich in H2S (at low
concentrations as found in natural springs) is able to exert hormetic therapeutic effects in different
pathological conditions related to inflammation. Moreover, hormetic effects of thermal waters rich in
sulfur could be a result of the synergistic effect of two different hormetins: H2S and heat.

5.3. Radon Hormetic Effects in Balneotherapy

Mineral-medicinal waters rich in radon are radioactive and can also be considered a therapeutic
hormetic strategy. Radon spa therapy consists of the intake of radon either by inhalation or by
transcutaneous absorption of radon dissolved in water, and it is applied in several inflammatory
diseases such as asthma, bronchitis, psoriasis and arthritis [118]. Although ionizing radiation has
been shown to be carcinogenic at high doses, at low doses it produces biologically beneficial effects by
initially causing low-level molecular damage, which then leads to the activation of one or more stress
response pathways and therefore induces adaptive mechanisms [3] that may prevent cancer as well
as other adverse health effects [1,119]. Mechanisms of radiation-induced hormetic response include
activation of DNA repair, scavenging of free radicals, elimination of damaged cells by apoptosis,
synthesis of stress proteins such as Hsp, and stimulation of the immune response [119,120].

A study by Yamaoka and co-workers [121] proved that radon spa therapy was more effective
than thermotherapy alone in enhancing antioxidant functions (SOD and catalase activities) and in
increasing ACTH, β-endorphin, and insulin levels, among other biomarkers. These results indicate
that radon in spa therapy adds further beneficial hormetic outcomes to those of thermal interventions
alone, suggesting a synergistic effect of heat and radon. The same group obtained similar results in
another study in OA patients undergoing radon spa therapy. There was an improvement in antioxidant
and immune function together with changes in pain-associated biomarkers [122]. Conversely, another
study carried out in patients with degenerative musculoskeletal disorders found no significant effects
on the human endocrine system after balneotherapy with a very low radon content, suggesting that a
minimum radon concentration is required in order to exert biological effects [123]. Therefore, radon
spa therapy at optimal radon concentrations could be a useful complementary therapy in metabolic
syndrome and rheumatic diseases such as OA.

In the context of rheumatic diseases, the anti-inflammatory mechanisms of this strategy have
been demonstrated. Some of these mechanisms are a decrease in NO and ROS levels, increase in
heme-oxygenase 1 and TGF-β levels, TNF-α suppression, activation of transcription factors, and
enhancement of regulatory T cells. Thus, low-dose ionizing radiation exposure is able to diminish
pivotal inflammatory processes associated with arthritis, by inducing a switch from a pro-inflammatory
to an anti-inflammatory phenotype following the hormetic response [124,125].
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Furthermore, several randomized clinical trials have reported significant long-term beneficial
symptom-related effects of radon balneotherapy in rheumatic diseases, lasting up to nine months
post-intervention. Compared to radon-free treatments, radon balneotherapy was superior in terms of
pain relief, function improvement, reduction in anti-inflammatory and analgesic drug consumption,
and persistence of these benefits over a longer term [126–128]. Moreover, a meta-analysis by Falkenbach
and co-workers [129] showed significantly better pain reduction in the long term after radon spa
therapy in rheumatic pathologies.

Overall, the results suggest beneficial long-term clinical effects of radon spa therapy—consistent
with the concept of hormesis—as a complementary strategy in the treatment of rheumatic conditions,
especially RA and OA.

Table 1 presents a summary of the most relevant studies—according to quality (original
research, appropriate experimental design and methodology, English language, indexed in PubMed)
and originality—regarding potential biological biomarkers mediating clinical benefits of different
modalities of spa therapy, and proposed hormetic mechanisms participating, at least partially, in
these effects.
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Table 1. Potential hormetic mechanisms and biomarkers mediating the clinical benefits of different modalities of spa therapy.

Study Treatment(s) Main Hormetic
Mechanism

Experimental
Subjects Pathology Biomarkers Clinical Benefits

Yamashita et al., 1998 [86] Hydrotherapy (40–42 ◦C, 1 session of 5–15 min) Heat stress Rats Myocardial
ischemia

Increased Hsp72 and manganese-SOD
myocardial levels

Biphasic reduction in the incidence of
ventricular fibrillation and in the size of the
myocardial infarction

Okada et al., 2004 [87] Hydrotherapy (41 ◦C, 28 daily sessions of 15 min) Heat stress Rats Inflammatory
arterial lesions

Reduced monocyte/macrophage infiltration and
MCP-1 expression in the adventitia of arteries;
increased expression of Hsp72 in the adventitia and
media of arteries

Suppression of neointimal thickening

Bathaie et al. 2010 [88] Hydrotherapy (42 ◦C, 60 daily sessions of 30 min) Heat stress Rats Diabetes

Serum HDL increased whereas LDL, TG, and TC
decreased; insulin and eHsp72 serum levels
increased; AGE products serum levels decreased;
serum antioxidant capacity improved

Prevention of diabetes complications and
increased survival

Kavanagh et al. 2016 [89] Hydrotherapy (40 ◦C, 10 daily sessions of 30 min) Heat stress Monkeys Insulin resistance
Increased muscle Hsp70 levels; reduction in plasma
glucose concentration; improved insulin secretion
and normalized responses to glucose challenge

Improved blood pressure and glucose
metabolism

Hooper 1999 [85] Hydrotherapy (38–41 ◦C, 18 daily sessions of 30 min) Heat stress Humans Type 2 diabetes
mellitus

Fasting plasma glucose and glycated hemoglobin
levels decreased

Body weight decreased and glucose
metabolism improved

Ortega et al. 2017 [49]
Balneotherapy, using water rich in bicarbonate and
calcium, and mud (38–42 ◦C, 10 daily sessions of
60 min)

Heat stress Humans Osteoarthritis

Levels of serum inflammatory cytokines (IL-1β,
TNF-α, IL-8, IL-6, and TGF-β) decreased; cortisol
serum levels increased and eHsp72 serum
levels decreased

Pain reduction; improved knee flexion
angle, stiffness and physical function; better
health-related quality of life

Uzunoğlu et al. 2017 [91] Balneotherapy, using water rich in bicarbonate and
calcium (39–40 ◦C, 21 daily sessions of 15 min) Heat stress Humans Osteoarthritis

Initial and transient increase in serum eHsp72 and
IFN-γ levels after first session, but final decrease of
these biomarkers at the end of the protocol

Not evaluated

Benedetti et al. 2010 [45]

Balneotherapy using sulfurous water at 37 ◦C and
mud at 46–48 ◦C (12 daily sessions of 20 min); with
(Group A) or without (Group B) drinking 400 mL of
the water daily

Hydrogen sulfide Humans Osteoarthritis

Group A: increase in plasma thiol levels, decrease
in plasma MDA and carbonyl levels, and in serum
TNF-α and COMP levels; all of them at the end of
the treatment and at 1-month follow-up. Plasma
MMP-2 levels decreased only at the end of the
treatment.Group B: plasma MDA and carbonyl
levels, and serum TNF-α levels decreased only at
the end of the therapy

Pain reduction

Benedetti et al. 2009 [114] Balneotherapy consisting of drinking sulfurous water
(500 mL daily for 2 weeks) Hydrogen sulfide Humans Healthy

Decreased plasma MDA, carbonyls, and advanced
oxidation protein products levels; increased plasma
antioxidant capacity and thiol levels

Not evaluated

El-Seweidy et al. 2011 [115] Balneotherapy consisting of drinking sulfurous water
(ad libitum daily for 7 weeks) Hydrogen sulfide Rats Diabetes

Serum concentrations of insulin, C-peptide and
IGF-1 increased; glycemia and glycated hemoglobin
levels decreased.Cardiac GSH and thiol levels
increased; glutathione disulfide levels decreased;
reduction in NF-κβ, MMP-2, TGF-β1, procollagen-1
and Fas-L gene expression in the left ventricle

Prevention of the development of
diabetes-induced fibrosis in the heart:
normal myocytes and absence of collagen
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Table 1. Cont.

Study Treatment(s) Main Hormetic
Mechanism

Experimental
Subjects Pathology Biomarkers Clinical Benefits

Sadik et al. 2011 [116]
Balneotherapy consisting of drinking
sulfurous water (ad libitum daily for
7 weeks)

Hydrogen sulfide Rats Diabetes

Serum concentrations of insulin, C-peptide and
IGF-1 increased; glycemia and glycated hemoglobin
levels decreased.Testosterone serum levels and
testicular GSH increased; testicular overexpression
of Bax/Bcl-2, cytochrome c, caspase-9 and -3, and
p53 was blocked.

Prevention of diabetes-induced testicular
dysfunction: improved seminiferous tubule
structure, number of spermatogenic cells
and hormonal function

Safar et al. 2015 [117]
Balneotherapy consisting of drinking
sulfurous water (ad libitum daily for
6 weeks)

Hydrogen sulfide Rats Diabetes

Glycemia and glycated hemoglobin levels
decreased.Decreased creatinine and urea serum
levels; decreased renal thiobarbituric acid reactive
substances levels; increased renal GSH levels

Prevention of diabetes-induced
nephropathy: improved kidney function
and absence of histopathological alterations

Yamaoka et al. 2004 [121]

Spa therapy consisting of inhalating radon
at 36 ◦C (Group A), or sauna bath at 48 ◦C
in the absence of radon (Group B)
(5 sessions of 40 min)

Radon Humans Healthy

Group A and B: SOD and catalase activity, and
insulin and glucose-6-phosphate dehydrogenase
levels increased; lipid peroxide levels and total
cholesterol decreased.Group A only: decreased
percentage of CD8+ cells and increased percentage
of CD4+ cells. Increased α-atrial natriuretic
polypeptide levels, ACTH, and β-endorphins;
decreased vasopressin levels.

Not evaluated

ACTH: adrenocorticotropic hormone; AGE: advanced glycation end; COMP: cartilage oligomeric protein; eHsp: extracellular heat shock protein; GSH: glutathione; HDL: high-density
lipoprotein; Hsp: heat shock protein; IFN-γ: interferon gamma; LDL: low-density lipoprotein; MCP-1: monocyte chemoattractant protein-1; MDA: malondialdehyde; MMP: matrix
metalloproteinases; NF-κβ: nuclear factor kappa beta; SOD: superoxide dismutase; TC: total cholesterol; TG: triglycerides.
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6. Conclusions

Balneotherapy is an effective complementary approach in the management of several low-grade
inflammation- and stress-related pathologies, especially rheumatic and metabolic conditions. However,
despite the demonstrated clinical and symptomatic benefits of these therapies, their role in modern
medicine is still controversial, mainly because the biological mechanisms underlying these benefits
have not yet been completely elucidated. In the context of these pathologies, further studies are
clearly necessary in order to clarify the mechanisms of effectiveness involving the stress response and,
consequently, its interaction with the inflammatory response.

In this review, we proposed that neuroendocrine and immune effects are very important biological
mechanisms of effectiveness of this therapy, and that several hormetic pathways can be involved
in these effects. Due to the variety and heterogeneity of balneotherapy modalities, water and mud
compositions, and application protocols, it is difficult to determine the exact intervention for obtaining
optimal biological and clinical outcomes in different pathologies. Furthermore, the regulation of
altered inflammatory and stress status by this strategy could be conditioned by each specific disease’s
basal set-point, so whether the benefits of balneotherapy could be extended to other conditions or even
healthy subjects remains unknown.

In the context of hormesis, it is necessary to ascertain the ideal temperature and concentration of
different bioactive chemical elements (as well as the number and duration of sessions, and intervals
between each session) in order to elicit hormetic responses without causing damaging or toxic effects.
Further studies looking deeper into the hormetic mechanisms of effectiveness are clearly needed, so
balneotherapy can be practiced by health professionals based on scientific evidence that supports
its use.
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Abbreviations

ACTH Adrenocorticotropic hormone
AGE Advanced glycation end
Akt Protein kinase B
AMPK AMP-activated protein kinase
COMP Cartilage oligomeric matrix protein
CRP C-reactive protein
eHsp Extracellular heat shock protein
FM Fibromyalgia
GH Growth hormone
GSH Glutathione
H2S Hydrogen sulfide
HDL High-density lipoprotein
HPA Hypothalamic-pituitary-adrenal
HS Heat shock
IFN-γ Interferon gamma
iHsp Intracellular heat shock protein
LDL Low-density lipoprotein
LTB4 Leukotriene B4
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MCP-1 Monocyte chemoattractant protein-1
MDA Malondialdehyde
MMP Matrix metalloproteinases
NA Noradrenaline
NF-κβ Nuclear factor kappa beta
NO Nitric oxide
OA Osteoarthritis
OARSI Osteoarthritis Research Society International
PBMC Peripheral blood mononuclear cells
PGE2 Prostaglandin E2
RA Rheumatoid arthritis
RANTES Regulated on Activation, Normal T-cell Expressed and Secreted
RNS Reactive nitrogen species
ROS Reactive oxygen species
SNS Sympathetic nervous system
SOD Superoxide dismutase
TC Total cholesterol
TG Triglycerides
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superoxide dismutase and catalase activity influenced by sulphur baths and mud packs in patients with
osteoarthritis. Vojnosanit. Pregl. 2010, 67, 573–578. [CrossRef] [PubMed]

112. Kovács, C.; Pecze, M.; Tihanyi, Á.; Kovács, L.; Balogh, S.; Bender, T. The effect of sulphurous water in patients
with osteoarthritis of hand. Double-blind, randomized, controlled follow-up study. Clin. Rheumatol. 2012, 31,
1437–1442. [CrossRef] [PubMed]

113. Sukenik, S.; Buskila, D.; Neumann, L.; Kleiner-Baumgarten, A.; Zimlichman, S.; Horowitz, J. Sulphur bath
and mud pack treatment for rheumatoid arthritis at the Dead Sea area. Ann. Rheum. Dis. 1990, 49, 99–102.
[CrossRef] [PubMed]

114. Benedetti, S.; Benvenuti, F.; Nappi, G.; Fortunati, N.A.; Marino, L.; Aureli, T.; De Luca, S.; Pagliarani, S.;
Canestrari, F. Antioxidative effects of sulfurous mineral water: Protection against lipid and protein oxidation.
Eur. J. Clin. Nutr. 2009, 63, 106–112. [CrossRef] [PubMed]

http://dx.doi.org/10.1155/2015/249205
http://www.ncbi.nlm.nih.gov/pubmed/25814786
http://dx.doi.org/10.1089/ars.2009.3074
http://www.ncbi.nlm.nih.gov/pubmed/20446769
http://dx.doi.org/10.1155/2017/8034084
http://www.ncbi.nlm.nih.gov/pubmed/28484507
http://www.ncbi.nlm.nih.gov/pubmed/25903948
http://www.ncbi.nlm.nih.gov/pubmed/28057188
http://dx.doi.org/10.1159/000107976
http://www.ncbi.nlm.nih.gov/pubmed/17804898
http://dx.doi.org/10.3109/01902148.2011.641668
http://www.ncbi.nlm.nih.gov/pubmed/22185392
http://dx.doi.org/10.1055/s-0033-1334894
http://www.ncbi.nlm.nih.gov/pubmed/23447143
http://www.ncbi.nlm.nih.gov/pubmed/24152854
http://dx.doi.org/10.1016/j.lfs.2015.04.006
http://www.ncbi.nlm.nih.gov/pubmed/25939976
http://dx.doi.org/10.1111/jcmm.12405
http://www.ncbi.nlm.nih.gov/pubmed/25312962
http://dx.doi.org/10.1177/039463201302600307
http://www.ncbi.nlm.nih.gov/pubmed/24067460
http://dx.doi.org/10.1016/j.joca.2014.04.031
http://www.ncbi.nlm.nih.gov/pubmed/24831018
http://dx.doi.org/10.1159/000066031
http://www.ncbi.nlm.nih.gov/pubmed/12232493
http://dx.doi.org/10.2298/VSP1007573J
http://www.ncbi.nlm.nih.gov/pubmed/20707053
http://dx.doi.org/10.1007/s10067-012-2026-0
http://www.ncbi.nlm.nih.gov/pubmed/22843170
http://dx.doi.org/10.1136/ard.49.2.99
http://www.ncbi.nlm.nih.gov/pubmed/2180388
http://dx.doi.org/10.1038/sj.ejcn.1602892
http://www.ncbi.nlm.nih.gov/pubmed/17717532


Int. J. Mol. Sci. 2018, 19, 1687 19 of 19

115. El-Seweidy, M.M.; Sadik, N.A.; Shaker, O.G. Role of sulfurous mineral water and sodium hydrosulfide as
potent inhibitors of fibrosis in the heart of diabetic rats. Arch. Biochem. Biophys. 2011, 506, 48–57. [CrossRef]
[PubMed]

116. Sadik, N.A.; El-Seweidy, M.M.; Shaker, O.G. The antiapoptotic effects of sulphurous mineral water and
sodium hydrosulphide on diabetic rat testes. Cell. Physiol. Biochem. 2011, 28, 887–898. [CrossRef] [PubMed]

117. Safar, M.M.; Abdelsalam, R.M. H2S donors attenuate diabetic nephropathy in rats: Modulation of oxidant
status and polyol pathway. Pharmacol. Rep. 2015, 67, 17–23. [CrossRef] [PubMed]

118. Erickson, B.E. The therapeutic use of radon: A biomedical treatment in Europe; an “alternative” remedy in
the United States. Dose Response 2007, 5, 48–62. [CrossRef] [PubMed]

119. Feinendegen, L.E. Evidence for beneficial low level radiation effects and radiation hormesis. Br. J. Radiol.
2005, 78, 3–7. [CrossRef] [PubMed]

120. Ibuki, Y.; Hayashi, A.; Suzuki, A.; Goto, R. Low-dose irradiation induces expression of heat shock protein 70
mRNA and thermo- and radio-resistance in myeloid leukemia cell line. Biol. Pharm. Bull. 1998, 21, 434–439.
[CrossRef] [PubMed]

121. Yamaoka, K.; Mitsunobu, F.; Hanamoto, K.; Shibuya, K.; Mori, S.; Tanizaki, Y.; Sugita, K. Biochemical
comparison between radon effects and thermal effects on humans in radon hot spring therapy. J. Radiat. Res.
2004, 45, 83–88. [CrossRef] [PubMed]

122. Yamaoka, K.; Mitsunobu, F.; Hanamoto, K.; Mori, S.; Tanizaki, Y.; Sugita, K. Study on biologic effects of
radon and thermal therapy on osteoarthritis. J. Pain 2004, 5, 20–25. [CrossRef] [PubMed]

123. Nagy, K.; Berhés, I.; Kovács, T.; Kávási, N.; Somlai, J.; Bender, T. Does balneotherapy with low radon
concentration in water influence the endocrine system? A controlled non-randomized pilot study.
Radiat. Environ. Biophys. 2009, 48, 311–315. [CrossRef] [PubMed]

124. Calabrese, E.J.; Calabrese, V. Reduction of arthritic symptoms by low dose radiation therapy (LD-RT) is
associated with an anti-inflammatory phenotype. Int. J. Radiat. Biol. 2013, 89, 278–286. [CrossRef] [PubMed]

125. Calabrese, E.J.; Calabrese, V. Low dose radiation therapy (LD-RT) is effective in the treatment of arthritis:
Animal model findings. Int. J. Radiat. Biol. 2013, 89, 287–294. [CrossRef] [PubMed]

126. Franke, A.; Reiner, L.; Pratzel, H.G.; Franke, T.; Resch, K.L. Long-term efficacy of radon spa therapy in
rheumatoid arthritis—A randomized, sham-controlled study and follow-up. Rheumatology 2000, 39, 894–902.
[CrossRef] [PubMed]

127. Franke, A.; Reiner, L.; Resch, K.L. Long-term benefit of radon spa therapy in the rehabilitation of rheumatoid
arthritis: A randomised, double-blinded trial. Rheumatol. Int. 2007, 27, 703–713. [CrossRef] [PubMed]

128. Annegret, F.; Thomas, F. Long-term benefits of radon spa therapy in rheumatic diseases: Results of the
randomised, multi-centre IMuRa trial. Rheumatol. Int. 2013, 33, 2839–2850. [CrossRef] [PubMed]

129. Falkenbach, A.; Kovacs, J.; Franke, A.; Jörgens, K.; Ammer, K. Radon therapy for the treatment of rheumatic
diseases—review and meta-analysis of controlled clinical trials. Rheumatol. Int. 2005, 25, 205–210. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.abb.2010.10.014
http://www.ncbi.nlm.nih.gov/pubmed/20965145
http://dx.doi.org/10.1159/000335803
http://www.ncbi.nlm.nih.gov/pubmed/22178941
http://dx.doi.org/10.1016/j.pharep.2014.08.001
http://www.ncbi.nlm.nih.gov/pubmed/25560570
http://dx.doi.org/10.2203/dose-response.06-007.Erickson
http://www.ncbi.nlm.nih.gov/pubmed/18648554
http://dx.doi.org/10.1259/bjr/63353075
http://www.ncbi.nlm.nih.gov/pubmed/15673519
http://dx.doi.org/10.1248/bpb.21.434
http://www.ncbi.nlm.nih.gov/pubmed/9635495
http://dx.doi.org/10.1269/jrr.45.83
http://www.ncbi.nlm.nih.gov/pubmed/15133294
http://dx.doi.org/10.1016/j.jpain.2003.09.005
http://www.ncbi.nlm.nih.gov/pubmed/14975375
http://dx.doi.org/10.1007/s00411-009-0222-3
http://www.ncbi.nlm.nih.gov/pubmed/19308439
http://dx.doi.org/10.3109/09553002.2013.752594
http://www.ncbi.nlm.nih.gov/pubmed/23176159
http://dx.doi.org/10.3109/09553002.2013.752595
http://www.ncbi.nlm.nih.gov/pubmed/23176184
http://dx.doi.org/10.1093/rheumatology/39.8.894
http://www.ncbi.nlm.nih.gov/pubmed/10952746
http://dx.doi.org/10.1007/s00296-006-0293-2
http://www.ncbi.nlm.nih.gov/pubmed/17203297
http://dx.doi.org/10.1007/s00296-013-2819-8
http://www.ncbi.nlm.nih.gov/pubmed/23864139
http://dx.doi.org/10.1007/s00296-003-0419-8
http://www.ncbi.nlm.nih.gov/pubmed/14673618
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Balneotherapy as a Strategy for Health 
	Balneotherapy and Immune System 
	Balneotherapy and Stress 
	Balneotherapy as a Hormetic Strategy 
	Heat Stress Hormetic Effects in Balneotherapy 
	Hydrogen Sulfide Hormetic Effects in Balneotherapy 
	Radon Hormetic Effects in Balneotherapy 

	Conclusions 
	References

